1000plastinok.info

Альянс Строй


966a4618
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Герметизация стыков воздуховодов вентиляции

Класс герметичности воздуховодов в что это?

Герметизация вoздyхoвoдoв промышленных систем вентиляции

Основной параметр — расход (производительность) потока в данной точке, демонстрирующий, какое количество газо-воздушной смеси приходит в контрольный участок и каковы потери. Полученные значения сравнивают с начальными параметрами потока, а разницу в показаниях анализируют и определяют размеры расхождений.

Эта методика позволяет получить достаточно корректные данные, но только на относительно однородных воздуховодах небольшой протяженности и без разветвления. Более сложные системы проверять труднее из-за отсутствия фиксированных требований и нормативов.

На практике нередко возникают ситуации, когда полученные в результате проверки данные нельзя корректно отнести к соответствующим нормативам.

В нормативных документах встречается немалое количество несоответствий, когда для одного объекта применяются требования из разных СНиП, устаревших и противоречащих друг другу.

Например, само по себе требование испытаний герметичности четко не определяется, нет прямого указания, какие воздуховоды подлежат проверке. Кроме того, имеются расхождения в величине допустимых утечек — в более старых документах называют ±8 %, а в СП 60.13330.2012 указано 6 %, что также вносит заметную путаницу.

Все эти проблемы отрицательно влияют на процесс проектирования и монтажа вентиляционных систем, что в конечном счете сказывается на качестве выпускаемой продукции или самочувствии людей.

Герметизация воздуховододов

Метод герметизации воздуховодов, как правило, определяется в процессе проектирования вентиляционной системы. Однако, в процессе эксплуатации возможны существенные изменения в технологии, в размерах и назначении системы воздуховодов, появление дополнительных ответвлений, изменяющих конфигурацию и параметры сети. Все эти дополнения могут потребовать герметизации уже использующихся воздуховодов.

Кроме того, со временем материалы выходят из строя, теряют свои свойства, возникают новые требования. Поэтому процесс герметизации периодически повторяется при необходимости или новым условиям эксплуатации.

Оптимальный вариант герметизации — уплотнение соединений, выполненное на стадии монтажа системы. В этом случае удается добиться лучших результатов и сократить потери до минимума.

Герметизация используемого воздуховода представляет собой схожую процедуру, но более трудоемкую из-за необходимости очистки и подготовки поверхности.

Процесс состоит в заполнении швов и стыков герметиком или оклейке специальными герметизирующими лентами. При этом поверхность трубопроводов должна быть очищена от пыли и загрязнений, при необходимости обрабатываемые участки обезжиривают ацетоном или иными активными жидкостями. Выбор обезжиривающих материалов определяется технологией и условиями эксплуатации воздуховодов.

При уплотнении действующих каналов следует выбирать наиболее эффективные материалы, не требующие многослойного нанесения или специфических условий использования. Проще всего герметизировать воздуховоды, имеющие фланцевое соединение, но прочность сцепления герметика в этом случае ниже, чем на муфтовых или реечных воздуховодах.

Процесс герметизации производится поэтапно:

  • очистка участка воздуховода
  • подготовка герметика (для материалов, изготавливаемых непосредственно перед нанесением)
  • нанесение герметика на соединение
  • выдержка, ввод герметизированного воздуховода в эксплуатацию

Если процесс нанесения герметика не дает положительного эффекта, производят установку уплотнительных бандажей. Они имеют форму полых хомутов, заполняемых по внутренней выемку герметизирующими составами, не дающими усадки. Как вариант, могут быть использованы эластичные прокладки, уплотняющие соединение.

Материалы для герметизации воздуховодов

До недавнего времени основным материалом для герметизации воздуховодов являлись различные типы силиконового герметика. Кроме него используются:

Герметизирующие составы

Среди герметиков различного типа наиболее популярны акриловые составы, невысыхающие или нетвердеющие мастики, самовулканизирующиеся материалы.

Ленточные уплотнители

Среди ленточных уплотнителей лидируют асбестовые или хризолитовые шнуры (используются в системах дымоудаления или в составе вентиляционных систем химических производств). Tакже эффективны полимерные жгуты или плоские ленты, которые плотно прилегают к поверхностям соединяемых элементов.

Прокладки из листовых материалов

Для прокладок чаще всего используются пористая резина, асбестовый картон или листовой материал на основе ПВХ.

Самоклеющиеся материалы

Среди самоклеющихся лент можно выделить алюминиевый скотч, различные специализированные уплотнительные ленты, бутилкаучуковые ленты с дублирующим тканевым элементом.

Герметизация воздуховодов — важная составляющая систем вентиляции, без которой последняя будет работать неэффективно.

Наша компания «Континент климата» с 2001 года занимается проектированием, монтажом и обслуживанием систем промышленной вентиляции в Москве и Подмосковье.

Мы делаем работу быстро, качественно и по доступным ценам. Обращайтесь к нам в любое время по телефону 8 (926) 18 89 636.

Подробнее с перечнем работ и ценами на них вы можете ознакомиться здесь.

Контроль качества работ по герметизации воздуховодов

1.52. Проверка качества работ по герметизации соединений воздуховодов включает в себя пооперационный контроль: качества изготовления соединительных частей (фланцев, бандажей, реек и т.п.), соблюдения соосности и параллельности торцов соединяемых частей, правильности укладки уплотнительных материалов, равномерности затяжки болтов, соответствия сортамента и качества применяемых герметизирующих материалов, срока их годности, качества подготовки металлических поверхностей к нанесению уплотнительных материалов и др.

Очистка поверхности металла перед герметизацией

Особенности современного монтажа систем вентиляции

А. В. Бусахин, генеральный директор ООО «Третье Монтажное Управление “Промвентиляция”»

Статья открывает серию публикаций, рассматривающих особенности современного монтажа систем вентиляции. В этом материале основное внимание уделено типам воздуховодов, видам и способам их соединения. В следующих статьях будут рассмотрены методы креплений, способы поточного монтажа, методика индивидуальных испытаний систем, пусконаладочные работы и сдача в эксплуатацию.

Современные проекты систем вентиляции и кондиционирования воздуха, направленные на решение задач воздухообмена и поддержания температуры, а также на контроль влажности, чистоты приточного воздуха, очистки и утилизации примесей вытяжного воздуха, интеллектуальные системы контроля и управления работы, требуют качественного и высокотехнологичного монтажа.

Сегодня в период перехода строительной отрасли от лицензирования к саморегулированию монтажники ждут появления технических регламентов, стандартов на монтажные работы. Эти документы должны учесть специфику современного монтажа, новых материалов и технологий, производства пусконаладочных работ, сдачи в эксплуатацию и работы по техническому обслуживанию систем инженерного обеспечения зданий и сооружений.

На сегодня мы имеем единственный документ, который оговаривает условия монтажа, – СНиП 3.05.01-85 «Внутренние санитарно-технические системы». Этот документ во многом устарел, не учитывает современные условия, материалы и оборудование.

Критерии выбора воздуховодов

Рассмотрим некоторые элементы монтажа систем вентиляции и кондиционирования. Основным из них является воздуховод. От качества изготовления и монтажа этого элемента зависит работоспособность запроектированной системы. Выбор материала воздуховодов остается за проектировщиками. Основными критериями при выборе является назначение системы, параметры перемещаемой среды. Наиболее часто применяются металлические воздуховоды (прямые и фасонные части) прямоугольного и круглого сечения, изготавливаемые по видам и размерному ряду, принятому в следующих документах:

  • ВСН 353-86 «Проектирование и применение воздуховодов из унифицированных деталей»;
  • ТУ-36-736-93 «Воздуховоды металлические»;
  • ТУ-4873-193-04612941-99.

Для транспортирования воздуха с температурой до 80 °С и относительной влажностью до 60 % в качестве материалов при изготовлении воздуховодов используют:

  • тонколистовую холоднокатаную оцинкованную сталь толщиной 0,5–1,0 мм;
  • тонколистовую горячекатаную сталь толщиной 0,5–1,0 мм, ГОСТ 16523-97 «Прокат тонколистовой из углеродистой стали качественной и обыкновенного качества общего назначения».

Если параметры воздуха выше указанных пределов, используют также нержавеющую сталь и, кроме того, углеродистую сталь толщиной 1,5–2,0 мм.

Необходимо учитывать, что указанный ГОСТ дает большой выбор стали по пластичности, способу проката, нанесения цинкового покрытия и т. д. Эти особенности должны учитываться при выборе металла для изготовления воздуховодов.

При наличии в воздушной смеси химически активных газов, паров, пыли воздуховоды изготавливают из металлопласта, алюминия и его сплавов, углеродистой стали толщиной 1,5–2,0 мм с соответствующим защитным покрытием. Герметичность воздуховодов обеспечивается по классу «Н» ТУ 36-736-93 и «В» по EVROVENT 2/2 с пределом давления и разряжения 750 Па.

Все многообразие конфигураций вентиляционных сетей выполняется из очень ограниченного ассортимента деталей, в котором прямые участки воздуховодов в среднем составляют около 70 % общей поверхности, остальное приходится на отводы, переходы, тройники и крестовины, нестандартные детали (фасонину).

В снижении затрат на изготовление воздуховодов большую роль играют замерщики (составители монтажных схем и ведомостей заказов). От их умения и навыка зависит количество фасонины, а следовательно, безотходность производства и стоимость изготовления.

С учетом различных дизайнерских решений современных интерьеров возможно использование открытопроложенных воздуховодов любой формы (треугольник, восьмигранник и т. д.). Также из декоративных соображений применяются различные материалы: медь, пластики, материи. Применение тканных воздухораздающих воздуховодов позволяет решить вопросы равномерной раздачи воздуха и украсить дизайн.

В современных проектах воздуховоды редко остаются без тепло-, звукоизоляции или огнезащитного покрытия, а иногда требуют и того и другого. Интересен существующий в этой области европейский опыт, не получивший у нас пока широкого распространения. Но уже появляются компании, специализирующиеся на изготовлении так называемых панельных воздуховодов. Они изготавливаются из фиброгейна и могут использоваться как в качестве покрытия для защиты металлического воздуховода, так и для изготовления воздуховодов. Эти плиты собираются на специальной огнеупорной мастике и закрепляются саморезами. Такие воздуховоды выдерживают высокие температурные нагрузки и не оставляют возможности для распространения пожара, как по горизонтали, так и по вертикали. Кроме того, они выполняют функции теплоизоляции. Недостатком этих конструкций является цена, которая выше, чем у металлических воздуховодов, покрытых огнезащитным составом.

Виды соединений металлических воздуховодов

По виду соединения листового материала металлические воздуховоды делятся на фальцевые и сварные. Сборку стальных воздуховодов из тонколистовой стали до 1 мм (в некоторых случаях до 1,5 мм) выполняют на фальцах, а при большей толщине – на сварке. Воздуховоды из алюминия и его сплавов при толщине листа до 1 мм собирают на фальцах, а свыше 1 мм – на сварке.

От качества выполнения фальцевого соединения зависят герметичность и правильные геометрические размеры. Так, для прямошовных прямоугольных воздуховодов, типичной проблемой является «винт» – результат сдвига при прокатке фальца, что приводит к осевому отклонению воздуховодов при монтаже.

Виды фальцевых и сварных соединений, наиболее широко применяемых при изготовлении воздуховодов, показаны на рис. 1.

Виды фальцевых и сварных соединений металлических воздуховодов:
1 – на простом лежачем фальце; 2 – на фальце с двойной отсечкой; 3 – на угловом фальце; 4 – на поперечном фальце; 5 – на фальце с защелкой; 6 – соединительной планкой; 7 – на зигах; 8 – встык; 9 – встык с отбортовкой; 10 – внахлестку; 11 – угловые

Способы соединения

Круглые воздуховоды

На сегодняшний день для круглых воздуховодов применяются 3 вида соединения: фланец, бандаж (встречается редко) и ниппель/муфта (широко применяется).

Читать еще:  Гидроизоляция бассейна жидким полимерным покрытием

Фланцы. Все, что касается этого вида соединения, прописано в ГОСТе. Обратим внимание на обязательные моменты. Для фальцевых воздуховодов фланец, изготовленный из полосы (для небольших диаметров) или из угловой стали (для больших диаметров), должен закрепляться на воздуховоде с помощью отбортовки. Это метод его крепления и обеспечения дальнейшей герметизации воздуховода. Обязательное условие – отбортовка не должна перекрывать отверстий фланцевого соединения.

Бандаж. Это соединение очень удобно, особенно для различных химических производств. Бандаж надевают на воздуховод с отбортованными торцами. Внутреннее заполнение бандажа может быть различным. Это могут быть любые герметизирующие мастики. На химическом производстве – химически стойкая мастика. Таким образом, бандаж обеспечивает герметичность металлического воздуховода очень дешевым способом. К сожалению, само производство бандажей значительно дороже, поэтому на бытовых объектах их применять дорого.

Ниппельное или муфтовое соединение. На сегодняшний день нет никакого документа, который регламентировал бы применение ниппелей. Условно говоря, ниппель – это участок воздуховода чуть меньшего диаметра, который вставляется внутрь воздуховода, соединяя его части. Муфта – то же самое, только снаружи воздуховода.

Выпускается большое количество ниппелей. Самый дешевый из них без резинового уплотнителя, более дорогой имеет в своем составе один или два резиновых уплотнителя. И поскольку регламентирующие документы отсутствуют, то выбор ниппеля остается за монтажником. Если применяется ниппель без резинки, то обязательным условием является покрытие самого стыка герметизирующей лентой. Это может быть либо самоклеющаяся алюминиевая лента, либо различные полимерные скотчи. Насколько это практично, экономично, а главное – долговечно? Производители утверждают, что срок службы алюминиевой ленты сопоставим со сроком службы воздуховода. В большинстве случаев с этим можно согласиться, но только если воздуховод находится в теплом сухом помещении. Однако, во-первых, это не всегда так, а во-вторых, сами воздуховоды не всегда перемещают теплую сухую среду. Поэтому надо понимать, что в случае перемещения влажной, повышенной температуры среды в первую очередь будет выгорать клей и лента просто отвалится. Аналогично обстоит дело с муфтой.

Раструб. Это очень распространенный способ соединения, при котором воздуховод заходит в воздуховод. Варианта два:

  1. Сам воздуховод выполнен конусом.
  2. На концах имеются расширение или сужение для соединения.

Для вентиляции такой воздуховод не обладает нужной герметичностью. Но есть весьма актуальная область применения раструбного соединения – это устройство вытяжек с естественной тягой для котлов и каминов.

Прямоугольные воздуховоды

Широко применяются два соединения: фланец и шина.

Фланец. Соединения такие же, как и для круглых воздуховодов. Однако, если на круглом не обязательно крепить фланец к воздуховоду, то на прямоугольном мы обязаны это сделать, потому что на плоскости возможно проседание стороны и неплотное прилегание к фланцу. Вариантов крепежа много. Если воздуховод оцинкованный, самый плохой вариант – точечная сварка. К сожалению, она часто применяется, поскольку это самый дешевый и простой способ. Чем плохо – в месте точечной сварки цинк сгорает. Добросовестный производитель красит место сварки, если этого не сделать, через 2–3 года в месте сварки будет коррозия, что ослабит крепление. В результате теряется плотность воздуховода. В воздуховодах, перемещающих агрессивные среды, фланец должен крепиться заклепкой, покрытой химически стойким материалом.

На прямоугольных воздуховодах мы еще сталкиваемся с фланцем на сварных воздуховодах. Допускается крепить его на отбортовке, но при этом она не должна перекрывать отверстия фланца. Самый распространенный вариант – это приваривание фланца к воздуховоду. В случае болтового соединения – прокладка из листового или шнурового асбеста; фланцы без отверстий (приваренные) обвариваются по гребню фланца.

Шина. Для систем общеобменной вентиляции, для прямоугольных оцинкованных воздуховодов чаще всего используется шина. Из профиля, изготовленного из оцинкованной стали, делается «фланец» на весь периметр воздуховода. Обязательным элементом являются угловые вставки, которые соединяют каждую из сторон. При стороне воздуховода более 200 мм обязательно устанавливается стягивающий замок, обеспечивающий плотность соединения по всей стороне шины.

На что следует обратить внимание? Необходимо герметизировать углы. Для этих целей используются герметики, выбор которых должен учитывать агрессивность перемещаемой среды. Шина должна крепиться к торцу воздуховода с помощью саморезов, заклепок, точечной сварки или пресса (холодная сварка). Прокладки должны быть изготовлены из следующих материалов: поролона, ленточной пористой или монолитной резины толщиной 4–5 мм или полимерного мастичного жгута (ПМЖ).

Плотные воздуховоды

Очень часто возникают вопросы по «нормальным» и «плотным» воздуховодам. СНиП 41-01-2003, п. 7.11.7, определяет, что воздуховоды систем

а) класса П (плотные) – для транзитных участков систем общеобменной вентиляции и воздушного отопления при статическом давлении у вентилятора более 600 Па, для транзитных участков систем местных отсосов, кондиционирования, воздуховодов любых систем с нормируемым пределом огнестойкости, дымоходов и дымовых труб, а также систем, обслуживающих помещения категорий А и Б независимо от давления у вентилятора;

б) класса Н (нормальные) – в остальных случаях.

Также СНиП 41-01-2003 приводит таблицы допустимых потерь (подсосов), формулы для вычисления потерь в зависимости от давления.

Чем же отличаются плотные воздуховоды от нормальных? Внешних отличий практически нет. Будет ли система плотной (а следовательно, и воздуховоды), зависит от качества изготовления (плотность фальцев, герметизация шины, качество сварного стыка) и качества монтажа (герметизация стыковых соединений).

Контролем являются результаты пусконаладочных работ, которые показывают объемы утечек и подсосов или на промежуточных этапах результаты аэродинамических испытаний отдельных участков воздуховодов (стояк, магистраль).

Поделиться статьей в социальных сетях:

Борьба с конденсатом на примере

Рассмотрим конкретную ситуацию. В одноэтажном частном доме имеется система вентиляции, которая обеспечивает воздухообмен в санузле и кухне. К этим помещениям подведены металлические вентиляционные трубы.

Они проложены по чердаку с последующим выходом на кровлю. При суточных температурных колебаниях в трубах образуется конденсат. Но особенно его большое количество наблюдается зимой, когда с вытяжки капает вода, собираясь в лужицу.


Чердаки обычно не отапливаются, поэтому вентиляционные трубы, проложенные в этом помещении, нуждаются в утеплении по всей своей длине

Проблема решается комплексно. Выполняется утепление вытяжной и приточной трубы. Трубы утепляются, начиная от входа в потолок и до выхода наружу. На участках, проходящих по неотапливаемому чердачному помещению, трубы утепляются рулонной минватой толщиной 70-100 мм.

В местах прохода через потолок и перекрытие используется скорлупа. В нижней точке устанавливается тройник с конденсаторосборником.

Если вентканалы проходят не через кровлю, а через стену, с помощью скорлупы утепляется участок в стене. Снаружи дома на вентиляционную трубу устанавливают тройник 90 градусов, монтируют конденсатосборник и зонт (дефлектор).

Виды прокладочных материалов

Прокладки, используемые при установке элементов вентиляционных систем, играют существенную роль в плане герметизации.

Поэтому важно использовать наиболее подходящий материал или применять специальные герметизирующие составы.

Схема устройства воздуховода.

Для герметизации стыков наиболее часто используют:

  1. Шнур асбестовый (ГОСТ1779-83). Применяется в ходе монтажа для герметизации при температуре плоскостей не более +400°С. Производители предлагают данные изделия толщиной 0,7-32 мм. Чтобы изготовить прокладку, отрежьте кусок шнура нужной длины и уложите его на фланец. Далее пропустите через прокладку из асбеста болты, чтобы с обеих сторон их огибали нити. Хранить шнур необходимо в сухом месте.
  2. Пористая резина. Изготавливается из твердых каучуков, имеет высокие амортизирующие и герметизирующие свойства. Предлагаемая на рынке стройматериалов пористая резина может быть термостойкой (до +140°С), маслобензостойкой, а также устойчивой к воздействию агрессивных сред. Резина любого типа сохраняет свои качества в диапазоне от минус 30°С до +50°С.
  3. ПРК. Материал полимерного типа в виде ленты, имеющей толщину до 6 мм и ширину до 50 мм. Ленту располагают на зеркале фланца, прокалывают отверстия под соединительные болты и затягивают. Недостаток данного материала – большая жесткость, из-за чего отверстия под болты приходится прокалывать с помощью бородка.
  4. СТУМ. Термоусаживающиеся манжеты, также изготавливаемые из полимеров. Производители предлагают изделия диаметром 130-355 мм. Используют в температурном диапазоне – 40°С – + 60°С.
  5. «Бутепрол». Невысыхающий состав, используемый при соединениях бандажного типа в круглых воздуховодах, по которым проходит воздушный поток, прогретый до +70°С.
  6. «Герлен». Нетвердеющая плоская лента, изготовленная из материала нетканого типа. Применяется при фланцевом типе соединения при температуре не выше +40°С. Выпускается в виде ленты длиной 12 м при ширине 80-200 мм.
  7. «Гелан». Синтетическая мастика, которая не высыхает и не твердеет. Хорошо подходит для герметизации оборудования вентиляционных систем.

Помимо уплотняющих герметизирующих прокладок, при соединении воздуховодов используют крепежные детали, к которым в первую очередь относятся болты, гайки, заклепки. Их размеры стандартизированы, материалом изготовления служит низколегированная или оцинкованная сталь. Для монтажа отдельных деталей оборудования иногда используют стальные самонарезающие винты с конической резьбой.

Что это такое?

Вентиляция – процесс удаления или замены загрязненного воздуха в помещении и обеспечение в нем необходимых санитарно-гигиенических условий и создание в нем комфортного для человека микроклимата. Герметичность воздуховодов – воздухонепроницаемость коробов вентиляции. Именно герметичность обеспечивает качественную работы системы вентиляции и предохраняет вентилируемые здания от возникновения опасных ситуаций.

Какие материалы используются для утепления вентиляционных систем?

Все материалы, применяемые для термоизоляции воздуховодов, в первую очередь должны отвечать всем современным требованиям пожарной безопасности и санитарным нормам. Рекомендуемые для изоляции воздуховодов материалы делятся на несколько категорий:

Закрытопористый вспененный полиэтилен. Основная сфера его применения – изоляция систем принудительной вентиляции с сечением небольшой или средней величины площади. Обычно состоит из нескольких слоев (двух или трех): пенополиэтилена и алюминиевой фольги, обладающей отражающими свойствами. С внутренней стороны вспененный полиэтилен может иметь слой клея, тогда данная изоляция будет самоклеющейся. Наличие водостойкого клея значительно упрощает процесс установки термоизоляции на поверхность воздушного канала, самоклеющаяся пенополиэтиленовая изоляция не требует существенных усилий при фиксации.

Для помещений общественного назначения лучше всего подходит пенополиэтилен, покрытый алюминиевой фольгой. У такого типа изоляции есть несколько отличных положительных качеств:

  1. Не имеет токсических веществ в составе.
  2. Помимо теплоизоляции, имеет гидро-, звуко- и пароизоляционные свойства.
  3. Стоек к биологическим повреждениям: не подвержен порче насекомыми и возникновению плесени.
Читать еще:  Вентиляция подпола без продухов

Изоляция из вспененного полиэтилена удобна в использовании и очень практична

Вспененный искусственный каучук. Этот материал имеет более низкую рыночную стоимость, поэтому чаще применяется в промышленных масштабах, чем для изоляции узлов с небольшой протяженностью. Каучуковая термоизоляция также выпускается самоклеящаяся и без клеевого слоя, с покрытием из алюминиевой фольги и без него. Вспененный искусственный каучук для утепления продается как в рулонах, так и в виде рукавов, готовых к использованию. Правда, такие изделия могут быть применены только при монтаже вентиляционной системы. Также готовые изоляционные трубки не выпускаются для воздуховодов большого диаметра.

Термоизоляции из минеральных материалов. Применяются в основном для изоляции каналов с крупным сечением. Роль защитного покрытия может выполнять как алюминиевая фольга, так и полимерная пленка.

Скорлупы из пенополистирола. При помощи жестких скорлуп можно покрывать прямые участки воздуховодов. Места углов и поворот придется изолировать рулонными материалами.

Полезно знать! Использование рулонных утеплителей дает несколько преимуществ. Во-первых, такие материалы достаточно легко монтировать на уже готовую конструкцию. Во-вторых, слой изоляции получается очень герметичным, без швов и стыков. Также рулонные материалы позволяют снять нужное количество слоя при необходимости, например, при ремонте воздуховодной трассы.

Цены на услуги по герметизации воздуховодов

Для определения стоимости герметизации швов необходим выезд нашего специалиста на место проведения работ.

Ответы на любые возникшие вопросы вы можете получить по телефону +7 (495) 940-76-95 или по электронной почте, отправив заявку на наш адрес info@alptech.ru

Виды работЕд. измеренияЦена, руб.
Герметизация швовп. мдоговорная
Минимальная стоимость заказа7 000

Фотографии работ

Дополнительная информация

Компания «Альптехнологии» с 2000 г.занимается предоставлением услуг в сфере герметизации общественных, промышленных зданий и жилых домов. Мы предоставляем своим клиентам самое качественное обслуживание и гарантию на выполненные работы.

Компания «Альптехнологии» выполняет все виды высотных, монтажных, электромонтажных, ремонтных и строительных работ. Наши специалисты проконсультируют вас по всем вопросам, связанным с выполнением услуги, разработают техническое решение, подберут необходимые материалы.

Почему работы по герметизации заказывают в компании «Альптехнологии»

  • Выполняем работы силами штатных сертифицированных промальпинистов со строительными навыками и допусками к выполнению работ.
  • Оказываем услуги частным лицам и организациям.
  • Используем только сертифицированные в России материалы.
  • Принимаем поэтапную оплату за безналичный и наличный расчет. При больших объемах работ предоставляем существенные скидки.
  • Обеспечиваем безопасное и качественное выполнение заказа.
  • Выполняем работы на территории Москвы и Московской области. Возможен выезд специалистов в регионы.
  • Имеем все необходимые для оказания услуг промышленных альпинистов документы. Работаем с заключением договора.
  • Выдаем письменную гарантию на выполненные услуги.

По вызову заказчика наш сотрудник бесплатно осмотрит объект, составит проектную смету и ответит на вопросы клиента.

Чтобы сделать заказ, отправьте заявку на e-mail

Способы стыковки воздуховодов

Способы соединения деталей воздуховода можно разделить на сварные и фальцевые. Для сварного стыка необходима достаточная толщина стали или алюминия от 1,5 мм. Тонкостенные вентиляционные трубы соединяют, применяя фальцовку.

Обратите внимание! Сварные соединения на оцинкованных трубах требуют высокопрофессиональной сварки. Прогоревший слой цинка на стыке в процессе эксплуатации конструкции будет очагом коррозии металла, что снизит долговечность коммуникаций.

Фальцевые соединения бывают нескольких конфигураций. Наиболее используемые:

  • на простом фальце;
  • на фальце с защелкой;
  • на фальце с отбортовкой;
  • на соединительной планке;
  • на поперечном фальце;
  • встык;
  • внахлестку;
  • угловые.

Обратите внимание! Прокатка фальцевого крепления грозит смещением соединяемых частей трубопровода относительно друг друга по направляющей оси.

Кроме сварных и фальцевых используют соединения:

  • на фланцах;
  • с помощью муфты или ниппеля;
  • в раструб;
  • при помощи шины;
  • на бандаже.

Фланцевые соединения

Трубы для вентиляционных систем (независимо от их конструкции и сечения) соединяют при помощи специально изготовленных фланцев. Детали крепят на трубы при помощи точечной сварки или сплошного сварного шва. Между собой фланцы соединяют креплениями: заклепками или болтами с гайками. В случае использования крепежных болтов их располагают все на одну сторону.

Рекомендуем ознакомиться: Назначение электросварных муфт и необходимые инструменты для соединения полиэтиленовых труб

Обратите внимание! Наиболее предпочтительно соединение фланцев заклепками, специально обработанными антикоррозийной защитой.

На практике, часто используют точечную сварку для соединения фланцев между собой. Это может грозить быстрой разгерметизацией системы из-за коррозии металла в будущем. Для придания дополнительной защиты сварному соединению, фланцы рекомендуется тщательно прокрашивать. Сварка считается быстрым и недорогим способом монтажа вентиляционных труб.

Для придания герметичности соединению на стальных фланцах между ними укладывают уплотнительную прокладку. Какие материалы разрешено использовать для герметизации стыков воздуховодов, официально изложено в СНиП 3.05.01-85.

Фланцевое соединение воздуховодов является универсальным, надежным способом. Однако изготовление дополнительных деталей обходится дорого, а процесс сборки является трудоемким. Такие соединения используют при монтаже плотных воздуховодов, с высоким уровнем требований.

Соединение воздуховодов муфтой или ниппелем

Не менее распространенный способ соединения труб вентиляционных коммуникаций – оформление стыка муфтой или ниппелем.

Муфта (или внешний ниппель) представляет собой дополнительный отрезок трубы, диаметр которого чуть превышает диаметр основного трубопровода. Муфтой закрывают место стыка, одевая ее на трубопровод. Для герметизации все стыки промазывают специальным составом (герметиком), который подбирают в зависимости от предстоящих условий эксплуатации. Есть муфты, которые идут в комплекте с уплотняющей прокладкой. При монтаже таких муфт герметиком не пользуются.

Ниппель представляет собой отрезок трубы, меньшего диаметра, чем основной трубопровод. Его вставляют на место стыка изнутри. Здесь для герметизации используют специальную алюминиевую ленту.

Соединение воздуховодов между собой с использованием ниппеля получило большее распространение на круглых конструкциях. На прямоугольных сечениях их применяют реже.

Соединение в раструб

Данный тип соединения воздуховодов применяется только для труб с круглым сечением. Для осуществления соединения в раструб на одном конце трубы должен быть расширяющейся участок или вся конструкция должна иметь форму конуса. Трубы вставляют друг в друга, не закрепляя их дополнительно. Для герметизации используется уплотнительная прокладка либо пластичный герметик. Наибольшее распространение соединение в раструб получило при монтаже сэндвич-дымоходов и бытовой вытяжки на естественной тяге.

Обратите внимание! Соединение в раструб не обладает необходимой степенью надежности и герметичности, которая необходима для монтажа воздуховодов с агрессивными или высокотемпературными газами.

Еврошина

Для соединения деталей прямоугольных воздуховодов производят специальные шины. Эти детали похожи на соединительные фланцы для прямоугольных труб, которые разобраны на запчасти. Деталь представляет собой отрезок металлического оцинкованного профиля, который напоминает букву Г. Удлиненная сторона имеет размер от 20 до 30 мм. Шина идет в комплекте с уплотнителем и специальными уголками.

Обратите внимание! На углах соединения требуется дополнительная герметизация.

Шиной соединяют воздуховоды, которые используются для транспортировки не горячих, химически инертных воздушных масс.

Рекомендуем ознакомиться: Оцинкованная стальная труба для обустройства дымохода

Бандаж

Стыковка деталей воздуховода при помощи установки бандажа применяется на химических производствах. Это соединение высокой надежности. Однако использовать его для бытовых коммуникаций экономически невыгодно, поскольку изготовление самого бандажа процесс дорогостоящий.

Бандаж устанавливают поверх места стыковки трубопровода. Предварительно проводят отбортовку соединяемых торцов. Пространство бандажа заполняют герметизирующими материалами – теплоизоляционной или химически устойчивой мастикой.

Классы герметичности

Согласно Европейской стандартизации выделяется три основных класса герметичности воздуховодов: A, B, C. Каждый из них определяет допустимые потери транспортируемого воздуха на единицу длины канала. Оптимальным давлением считается 400 Па.

Российские нормы СНиП 41-01-2003 выделяют два класса герметичности: плотный и нормальный. В настоящее время действует стандарт СП 60.13330.2012 аналогичный Eurovent 2.2, согласно которому введено четыре класса плотности: A, B, C, D.

Класс А

Данный класс является самым низким, поэтому воздуховоды данного типа используются на непроизводственных объектах с минимальным уровнем пожароопасности. Допустимые утечки составляют не более 1,35 л/с на погонный метр. Применяются воздуховоды из оцинкованной стали, которые соединяются без применения герметика.

Класс В

Средний класс герметичности используется при монтаже систем в жилых и производственных помещениях с повышенными требованиями к вентиляции. Обеспечиваемый уровень протечек до 0,45 л/с/м.


Воздуховод в производственных помещениях

Класс С

Высший класс герметичности с уровнем воздухопроницаемости до 0,15 л/с/м ориентирован на монтаж вентиляционных систем в помещениях с повышенной взрыво- или пожароопасностью.

Как проверить герметичность воздуховодов

Испытания воздуховодов на герметичность реализуются по принципу учёта потерь на конечных подключённых устройствах, таких как решётки или диффузоры. Допустимые отклонения от расчётных, проведённых в соответствии со СНиП 41.01.2003, не должны отличаться более, чем на 8%, а согласно СП 60.13330.2012 — более 6%.

Способы аэродинамических испытаний сводятся к замеру расхода на конечных точках, а не всей системы в целом. Связано это с достаточно пространными требованиями, описанными в стандартизационной и нормативной документациях. Для измерений обычно применяют анемометры, которые располагают в плоскости сечения воздуховода или выходного отверстия.

Измерения на участках труб проводят с помощью установленных заглушек и вентилятора с известными параметрами и характеристиками с одной стороны, в местах стыков —микроманометров, а на другом конце — заглушки. По изменению показателей давлени определяют утечки и класс герметизации.


Герметичность воздуховода

Особенности современного монтажа систем вентиляции

А. В. Бусахин, генеральный директор ООО «Третье Монтажное Управление “Промвентиляция”»

Статья открывает серию публикаций, рассматривающих особенности современного монтажа систем вентиляции. В этом материале основное внимание уделено типам воздуховодов, видам и способам их соединения. В следующих статьях будут рассмотрены методы креплений, способы поточного монтажа, методика индивидуальных испытаний систем, пусконаладочные работы и сдача в эксплуатацию.

Современные проекты систем вентиляции и кондиционирования воздуха, направленные на решение задач воздухообмена и поддержания температуры, а также на контроль влажности, чистоты приточного воздуха, очистки и утилизации примесей вытяжного воздуха, интеллектуальные системы контроля и управления работы, требуют качественного и высокотехнологичного монтажа.

Сегодня в период перехода строительной отрасли от лицензирования к саморегулированию монтажники ждут появления технических регламентов, стандартов на монтажные работы. Эти документы должны учесть специфику современного монтажа, новых материалов и технологий, производства пусконаладочных работ, сдачи в эксплуатацию и работы по техническому обслуживанию систем инженерного обеспечения зданий и сооружений.

Читать еще:  Гидроизоляция стены гаража снаружи в земле

На сегодня мы имеем единственный документ, который оговаривает условия монтажа, – СНиП 3.05.01-85 «Внутренние санитарно-технические системы». Этот документ во многом устарел, не учитывает современные условия, материалы и оборудование.

Критерии выбора воздуховодов

Рассмотрим некоторые элементы монтажа систем вентиляции и кондиционирования. Основным из них является воздуховод. От качества изготовления и монтажа этого элемента зависит работоспособность запроектированной системы. Выбор материала воздуховодов остается за проектировщиками. Основными критериями при выборе является назначение системы, параметры перемещаемой среды. Наиболее часто применяются металлические воздуховоды (прямые и фасонные части) прямоугольного и круглого сечения, изготавливаемые по видам и размерному ряду, принятому в следующих документах:

  • ВСН 353-86 «Проектирование и применение воздуховодов из унифицированных деталей»;
  • ТУ-36-736-93 «Воздуховоды металлические»;
  • ТУ-4873-193-04612941-99.

Для транспортирования воздуха с температурой до 80 °С и относительной влажностью до 60 % в качестве материалов при изготовлении воздуховодов используют:

  • тонколистовую холоднокатаную оцинкованную сталь толщиной 0,5–1,0 мм;
  • тонколистовую горячекатаную сталь толщиной 0,5–1,0 мм, ГОСТ 16523-97 «Прокат тонколистовой из углеродистой стали качественной и обыкновенного качества общего назначения».

Если параметры воздуха выше указанных пределов, используют также нержавеющую сталь и, кроме того, углеродистую сталь толщиной 1,5–2,0 мм.

Необходимо учитывать, что указанный ГОСТ дает большой выбор стали по пластичности, способу проката, нанесения цинкового покрытия и т. д. Эти особенности должны учитываться при выборе металла для изготовления воздуховодов.

При наличии в воздушной смеси химически активных газов, паров, пыли воздуховоды изготавливают из металлопласта, алюминия и его сплавов, углеродистой стали толщиной 1,5–2,0 мм с соответствующим защитным покрытием. Герметичность воздуховодов обеспечивается по классу «Н» ТУ 36-736-93 и «В» по EVROVENT 2/2 с пределом давления и разряжения 750 Па.

Все многообразие конфигураций вентиляционных сетей выполняется из очень ограниченного ассортимента деталей, в котором прямые участки воздуховодов в среднем составляют около 70 % общей поверхности, остальное приходится на отводы, переходы, тройники и крестовины, нестандартные детали (фасонину).

В снижении затрат на изготовление воздуховодов большую роль играют замерщики (составители монтажных схем и ведомостей заказов). От их умения и навыка зависит количество фасонины, а следовательно, безотходность производства и стоимость изготовления.

С учетом различных дизайнерских решений современных интерьеров возможно использование открытопроложенных воздуховодов любой формы (треугольник, восьмигранник и т. д.). Также из декоративных соображений применяются различные материалы: медь, пластики, материи. Применение тканных воздухораздающих воздуховодов позволяет решить вопросы равномерной раздачи воздуха и украсить дизайн.

В современных проектах воздуховоды редко остаются без тепло-, звукоизоляции или огнезащитного покрытия, а иногда требуют и того и другого. Интересен существующий в этой области европейский опыт, не получивший у нас пока широкого распространения. Но уже появляются компании, специализирующиеся на изготовлении так называемых панельных воздуховодов. Они изготавливаются из фиброгейна и могут использоваться как в качестве покрытия для защиты металлического воздуховода, так и для изготовления воздуховодов. Эти плиты собираются на специальной огнеупорной мастике и закрепляются саморезами. Такие воздуховоды выдерживают высокие температурные нагрузки и не оставляют возможности для распространения пожара, как по горизонтали, так и по вертикали. Кроме того, они выполняют функции теплоизоляции. Недостатком этих конструкций является цена, которая выше, чем у металлических воздуховодов, покрытых огнезащитным составом.

Виды соединений металлических воздуховодов

По виду соединения листового материала металлические воздуховоды делятся на фальцевые и сварные. Сборку стальных воздуховодов из тонколистовой стали до 1 мм (в некоторых случаях до 1,5 мм) выполняют на фальцах, а при большей толщине – на сварке. Воздуховоды из алюминия и его сплавов при толщине листа до 1 мм собирают на фальцах, а свыше 1 мм – на сварке.

От качества выполнения фальцевого соединения зависят герметичность и правильные геометрические размеры. Так, для прямошовных прямоугольных воздуховодов, типичной проблемой является «винт» – результат сдвига при прокатке фальца, что приводит к осевому отклонению воздуховодов при монтаже.

Виды фальцевых и сварных соединений, наиболее широко применяемых при изготовлении воздуховодов, показаны на рис. 1.

Виды фальцевых и сварных соединений металлических воздуховодов:
1 – на простом лежачем фальце; 2 – на фальце с двойной отсечкой; 3 – на угловом фальце; 4 – на поперечном фальце; 5 – на фальце с защелкой; 6 – соединительной планкой; 7 – на зигах; 8 – встык; 9 – встык с отбортовкой; 10 – внахлестку; 11 – угловые

Способы соединения

Круглые воздуховоды

На сегодняшний день для круглых воздуховодов применяются 3 вида соединения: фланец, бандаж (встречается редко) и ниппель/муфта (широко применяется).

Фланцы. Все, что касается этого вида соединения, прописано в ГОСТе. Обратим внимание на обязательные моменты. Для фальцевых воздуховодов фланец, изготовленный из полосы (для небольших диаметров) или из угловой стали (для больших диаметров), должен закрепляться на воздуховоде с помощью отбортовки. Это метод его крепления и обеспечения дальнейшей герметизации воздуховода. Обязательное условие – отбортовка не должна перекрывать отверстий фланцевого соединения.

Бандаж. Это соединение очень удобно, особенно для различных химических производств. Бандаж надевают на воздуховод с отбортованными торцами. Внутреннее заполнение бандажа может быть различным. Это могут быть любые герметизирующие мастики. На химическом производстве – химически стойкая мастика. Таким образом, бандаж обеспечивает герметичность металлического воздуховода очень дешевым способом. К сожалению, само производство бандажей значительно дороже, поэтому на бытовых объектах их применять дорого.

Ниппельное или муфтовое соединение. На сегодняшний день нет никакого документа, который регламентировал бы применение ниппелей. Условно говоря, ниппель – это участок воздуховода чуть меньшего диаметра, который вставляется внутрь воздуховода, соединяя его части. Муфта – то же самое, только снаружи воздуховода.

Выпускается большое количество ниппелей. Самый дешевый из них без резинового уплотнителя, более дорогой имеет в своем составе один или два резиновых уплотнителя. И поскольку регламентирующие документы отсутствуют, то выбор ниппеля остается за монтажником. Если применяется ниппель без резинки, то обязательным условием является покрытие самого стыка герметизирующей лентой. Это может быть либо самоклеющаяся алюминиевая лента, либо различные полимерные скотчи. Насколько это практично, экономично, а главное – долговечно? Производители утверждают, что срок службы алюминиевой ленты сопоставим со сроком службы воздуховода. В большинстве случаев с этим можно согласиться, но только если воздуховод находится в теплом сухом помещении. Однако, во-первых, это не всегда так, а во-вторых, сами воздуховоды не всегда перемещают теплую сухую среду. Поэтому надо понимать, что в случае перемещения влажной, повышенной температуры среды в первую очередь будет выгорать клей и лента просто отвалится. Аналогично обстоит дело с муфтой.

Раструб. Это очень распространенный способ соединения, при котором воздуховод заходит в воздуховод. Варианта два:

  1. Сам воздуховод выполнен конусом.
  2. На концах имеются расширение или сужение для соединения.

Для вентиляции такой воздуховод не обладает нужной герметичностью. Но есть весьма актуальная область применения раструбного соединения – это устройство вытяжек с естественной тягой для котлов и каминов.

Прямоугольные воздуховоды

Широко применяются два соединения: фланец и шина.

Фланец. Соединения такие же, как и для круглых воздуховодов. Однако, если на круглом не обязательно крепить фланец к воздуховоду, то на прямоугольном мы обязаны это сделать, потому что на плоскости возможно проседание стороны и неплотное прилегание к фланцу. Вариантов крепежа много. Если воздуховод оцинкованный, самый плохой вариант – точечная сварка. К сожалению, она часто применяется, поскольку это самый дешевый и простой способ. Чем плохо – в месте точечной сварки цинк сгорает. Добросовестный производитель красит место сварки, если этого не сделать, через 2–3 года в месте сварки будет коррозия, что ослабит крепление. В результате теряется плотность воздуховода. В воздуховодах, перемещающих агрессивные среды, фланец должен крепиться заклепкой, покрытой химически стойким материалом.

На прямоугольных воздуховодах мы еще сталкиваемся с фланцем на сварных воздуховодах. Допускается крепить его на отбортовке, но при этом она не должна перекрывать отверстия фланца. Самый распространенный вариант – это приваривание фланца к воздуховоду. В случае болтового соединения – прокладка из листового или шнурового асбеста; фланцы без отверстий (приваренные) обвариваются по гребню фланца.

Шина. Для систем общеобменной вентиляции, для прямоугольных оцинкованных воздуховодов чаще всего используется шина. Из профиля, изготовленного из оцинкованной стали, делается «фланец» на весь периметр воздуховода. Обязательным элементом являются угловые вставки, которые соединяют каждую из сторон. При стороне воздуховода более 200 мм обязательно устанавливается стягивающий замок, обеспечивающий плотность соединения по всей стороне шины.

На что следует обратить внимание? Необходимо герметизировать углы. Для этих целей используются герметики, выбор которых должен учитывать агрессивность перемещаемой среды. Шина должна крепиться к торцу воздуховода с помощью саморезов, заклепок, точечной сварки или пресса (холодная сварка). Прокладки должны быть изготовлены из следующих материалов: поролона, ленточной пористой или монолитной резины толщиной 4–5 мм или полимерного мастичного жгута (ПМЖ).

Плотные воздуховоды

Очень часто возникают вопросы по «нормальным» и «плотным» воздуховодам. СНиП 41-01-2003, п. 7.11.7, определяет, что воздуховоды систем

а) класса П (плотные) – для транзитных участков систем общеобменной вентиляции и воздушного отопления при статическом давлении у вентилятора более 600 Па, для транзитных участков систем местных отсосов, кондиционирования, воздуховодов любых систем с нормируемым пределом огнестойкости, дымоходов и дымовых труб, а также систем, обслуживающих помещения категорий А и Б независимо от давления у вентилятора;

б) класса Н (нормальные) – в остальных случаях.

Также СНиП 41-01-2003 приводит таблицы допустимых потерь (подсосов), формулы для вычисления потерь в зависимости от давления.

Чем же отличаются плотные воздуховоды от нормальных? Внешних отличий практически нет. Будет ли система плотной (а следовательно, и воздуховоды), зависит от качества изготовления (плотность фальцев, герметизация шины, качество сварного стыка) и качества монтажа (герметизация стыковых соединений).

Контролем являются результаты пусконаладочных работ, которые показывают объемы утечек и подсосов или на промежуточных этапах результаты аэродинамических испытаний отдельных участков воздуховодов (стояк, магистраль).

Поделиться статьей в социальных сетях:

голоса
Рейтинг статьи
Ссылка на основную публикацию